## Ch. 6 -Enthalpy Changes

-Energy: "The capacity to do work."
-In Physics, there are 2 main types of energy...
$\cdot$ Kinetic $\left(\right.$ energy of motion) $=1 / 2 \mathrm{mv}^{2}$
$\bullet$ Potential (energy of position due to gravity)= mgh
-In Chemistry, we usually concern ourselves with the heat energy gained or lost during chemical reactions.

## Systems and Surroundings

- For thermochemical reactions, we will need to define the following parts of the reaction...
- System: part of the reaction we are interested in.
- Surroundings: the rest of the universe.
- Example: If we are interested in the reaction between hydrogen and oxygen in a cylinder, then the $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ in the cylinder form a system, and everything else is the surroundings.


## Endothermic and Exothermic Processes

- An endothermic process is one that absorbs heat from the surroundings. (positive q)

An endothermic reaction feels cold.
Example--an "instant" ice pack

- An exothermic process is one that transfers heat to the surroundings. (negative q)

An exothermic reaction feels hot.
Example--burning paper


## Transferring Energy

There are 2 ways to transfer energy in or out of a system...

1) Work...applying a force to an object and moving it a distance ( $\mathrm{W}=\mathrm{Fxd}$ )
2) Heat...the energy transferred from hotter objects to colder objects

- Energy is therefore capacity to do work OR transfer heat.

We will concern ourselves with the transfer of heat!

## The $1^{\text {st }}$ Law of Thermodynamics

- Energy cannot be created or destroyed.
- The first law of thermodynamics is really just the law of conservation of energy.
- The energy of (system + surroundings) is constant.
- Thus any energy transferred from a system must be transferred to the surroundings (and vice versa).
- We are going to be concerned with the energy
- Exchange between a chemical reaction and its
- Surroundings at constant pressure.


## Enthalpy

-Enthalpy, $H$ :
-Enthalpy is heat transferred between the system and surroundings carried out under constant pressure 100 kPa or 1000000 Pa and temperature of 298 K
$\Delta \mathrm{H}$ is (+) for endothermic reactions
$\Delta \mathrm{H}$ is ( - ) for exothermic reactions

The units of enthalpy change are $\mathrm{kJ} / \mathrm{mol}$

## Enthalpy profile diagrams

Exothermic


Endothermic


## Enthalpies of Reactions

-We can only measure the change in enthalpy, $\Delta H$.

$$
\Delta H=H_{\text {final }}-H_{\text {initial }}
$$

-For a reaction...

$$
\Delta H_{\mathrm{rxn}}=H_{(\text {products })}-H_{\text {(reactants) }}
$$

-The enthalpy change that accompanies a reaction is called the enthalpy of reaction or heat of reaction $\left(\Delta H_{\mathrm{rxn}}\right)$.
-Consider the equation for the production of water:

$$
2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)}-\cdots-->2 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \Delta H_{r x n}=-483.6 \mathrm{~kJ}
$$

-The equation tells us that 483.6 kJ of energy are released to the surroundings when water is formed \& the reaction would feel hot.
-These equations are called thermochemical equations.

## Calorimeters

-Calorimeters measure heat flow. It measures changes in water temperature after a reaction is performed.


Bomb Calorimeter
Usually studies combustion (Constant Volume)

## Measuring Heat, q

- Specific Heat Capacity is the amount of energy required to raise the temperature of an 1 g of a liquid by $1^{\circ} \mathrm{C}$.


## $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

$q=($ grams of substance $) \times($ specific heat $) \times \Delta T$.
$\mathrm{q}=$ energy transferred , in J
$\mathrm{m}=$ mass of water, in g
$\mathrm{c}_{\text {(water) }}=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ or $1.0 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$
$\mathrm{T}=$ temperature change in ${ }^{\circ} \mathrm{C}$

## Measuring Heat

-Practice Problems: How many joules of heat will raise the temperature of exactly 50 g of water at $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

## $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

$$
\begin{gathered}
\mathrm{q}=(50 \mathrm{~g}) \times\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times\left(50^{\circ} \mathrm{C}\right)=10450 \mathrm{~J} \\
\text { *Note: } \mathrm{q}_{(\text {solution })}=-\mathrm{q}_{(\mathrm{rxn})}
\end{gathered}
$$

-What is the molar heat capacity for water?

$$
\begin{gathered}
\mathrm{C}=\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \times(18.0 \mathrm{~g} / \mathrm{mole})=75.2 \mathrm{~J} / \mathrm{mol}^{\circ} \mathrm{C} \\
\text { So... } \\
\mathrm{C}=\mathrm{C}_{\times} M
\end{gathered}
$$

## Hess's Law

- If a reaction is carried out in a series of steps, $\Delta H$ for the reaction is the sum of $\Delta H$ for each of the steps.
- The total change in enthalpy is independent of the number of steps.
- Total $\Delta H$ is also independent of the nature of the path.

$$
\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)}-\cdots-->\mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \Delta H=-802 \mathrm{~kJ}
$$

(Add) $2 \mathrm{H}_{2} \mathrm{O}_{(g)}-\cdots--->2 \mathrm{H}_{2} \mathrm{O}_{(l)}$

$$
\Delta H=-88 \mathrm{~kJ}
$$

(Total) $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)}----->\mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \quad \Delta H=-890 \mathrm{~kJ}$

- Hess's Law provides a useful means of calculating energy changes that are difficult to measure...(in this case it's getting liquid water to form instead of water vapor.)


## Enthalpies of Formation

-If a compound is formed from its constituent elements, then the enthalpy change for the reaction is called the enthalpy of formation, $\Delta \mathrm{H}_{\mathrm{f}}$.

$$
\text { Example: } \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta H_{\mathrm{f}}=-393.5 \mathrm{~kJ}
$$

Standard state (standard conditions) refer to the substance at:

$$
1 \mathrm{~atm} \text { and } 25^{\circ} \mathrm{C}(298 \mathrm{~K})
$$

(We will assume that reactants and products are both at $25^{\circ} \mathrm{C}$ unless otherwise stated.)

- Standard enthalpy, $\Delta H^{\circ}$, is the enthalpy measured when everything is in its standard state.
-Standard enthalpy of formation of a compound, $\Delta H_{\mathrm{f}}^{\circ}$, is the enthalpy change for the formation of 1 mole of compound with all substances in their standard states.


## Enthalpies of Formation

-If there is more than one state for a substance under standard conditions, the more stable one is used.
-Example: When dealing with carbon we use graphite because graphite is more stable than diamond or $\mathrm{C}_{60}$.
-By definition, the standard enthalpy of formation of the most stable form of an element is zero. Why?
-Because there is no formation reaction needed when the element is already in its standard state.

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{C}_{(\text {graphite })}=\text { zero } \\
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{O}_{2(\mathrm{~g})}=\text { zero } \\
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{Br}_{2(\mathrm{l})}=\text { zero }
\end{aligned}
$$

## Using $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ to calculate $\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}$

- In general:

$$
\Delta H_{\mathrm{rxn}}^{\mathrm{o}}=\Sigma n \Delta H_{\mathrm{f} \text { (products) }}^{\mathrm{o}}-\Sigma m \Delta H_{\mathrm{f} \text { (reactants) }}^{\mathrm{o}}
$$

Where $n$ and $m$ are the coefficients from the balanced chemical equation.

Let's do one for practice!!!

## Using $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}$ to calculate $\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}$

-Example: Use Hess's Law to calculate $\Delta H^{o}{ }_{r x n}$ for...

$$
\mathrm{C}_{3} \mathrm{H}_{8(g)}+5 \mathrm{O}_{2(g)}-\cdots--->3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

- Step 1, the products...Form $3 \mathrm{CO}_{2}$ and $4 \mathrm{H}_{2} \mathrm{O}$ from their elements:

$$
\begin{array}{ll}
3 \mathrm{C}_{(s)}+3 \mathrm{O}_{2(\mathrm{~g})}-\cdots--->3 \mathrm{CO}_{2(\mathrm{~g})} & \Delta H_{l}=3 \Delta H^{\circ} \mathrm{f}\left[\mathrm{CO}_{2(\mathrm{~g})}\right] \ldots \text { tripled it! } \\
4 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}-\cdots--->4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \Delta H_{2}=4 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right] \ldots \text { quadrupled it! }
\end{array}
$$

- Step 2, the reactants...(Note: $\mathrm{O}_{2}$ has no enthalpy of formation since it is in the elemental state, so we concern ourselves with $\mathrm{C}_{3} \mathrm{H}_{8}$.)

$$
3 \mathrm{C}_{(\mathrm{s})}+4 \mathrm{H}_{2(\mathrm{~g})}-\cdots--->\mathrm{C}_{3} \mathrm{H}_{8(g)} \quad \Delta H_{3}=\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}\right]
$$

- Step 3, Now look up the values on p. 177 and do the math!

$$
\begin{gathered}
\Delta H_{\mathrm{rxn}}^{\mathrm{o}}=\Delta H_{\mathrm{f}(\text { products })}^{\mathrm{o}}-\Delta H_{\mathrm{f}(\text { reactants })} \\
\Delta H_{\mathrm{rxn}}^{\mathrm{o}}=[3(-393.5 \mathrm{~kJ})+4(-285.8 \mathrm{~kJ})]-[(-103.85 \mathrm{~kJ})] \\
\Delta H_{\mathrm{rxn}}^{\mathrm{o}}=-1180.5-1143.2+103.85=-2220 \mathrm{~kJ}
\end{gathered}
$$

## Enthalpy cycle diagram



- 1) write balanced equation up top
- 2) put elements at the bottom
-3) draw arrows
- 4) make sure you account for \# of moles


## Enthalpy of Combustion

Hr


H2

## Enthalpy of salt w/o water



## Heat of Fusion \& Heat of Vaporization

- Molar heat of fusion $\left(\Delta \mathrm{H}_{\text {fus }}\right)$ : the amount of energy required to take 1 mole of a solid to the liquid state.

Example: $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}_{\text {fus }}=6.01 \mathrm{~kJ}$
-Heat of fusion is usually greater for ionic solids than molecular solids since ionic solids are more strongly held together.

For ice to water ... $\Delta \mathrm{H}_{\text {fus }}=6.01 \mathrm{~kJ} / \mathrm{mol}$

- Molar heat of vaporization $\left(\Delta \mathrm{H}_{\text {vap }}\right)$ : the amount of energy required to take 1 mole of a liquid to the gaseous state.

Example: $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\text {vap }}=40.67 \mathrm{~kJ}$
For water to steam $\ldots \Delta \mathrm{H}_{\text {vap }}=40.67 \mathrm{~kJ} / \mathrm{mol}$
These values are mainly used as conversion factors!

