EQUILIBRIUM EXPRESSIONS AND EQUILIBRIUM CONSTANT, K_{C}

By: Michelle Taepakdee \& Craig Dent

EQUILIBRIUM CONSTANT, K ${ }_{C}$

Equilibrium Expressions:

General Reaction
$\mathrm{mA}+\mathrm{nB} \rightarrow \mathrm{pC}+\mathrm{qD}$
(Where m, n, p, and q are the number of moles in the equation)
Ex.) $2 \mathrm{Mg}+2 \mathrm{HCl} \rightarrow 2 \mathrm{MgCl}+\mathrm{H}_{2}$

Equilibrium Expression
$\mathrm{Kc}=[\mathrm{C}]^{\mathrm{P}}[\mathrm{D}] \underline{q}$
[A] ${ }^{\mathrm{m}}[\mathrm{B}]^{\mathrm{n}}$
(Where A, B, C, and D are concentrations of products and reactants, and m, n, p, and q are the number of moles of products and reactants)

THE UNITS OF K_{C}

- The units are determined by the calculation of the expression. Each bracket, or concentration, has a unit of mol dm . ${ }^{-3}$
- Ex.) $\mathrm{K}_{\mathrm{c}}{ }^{2}=[\mathrm{HII}]^{2} \quad$ Units of $\mathrm{K}=\left(\right.$ mol $\left.\mathrm{dm}^{-3}\right) \times\left(\right.$ mel $\left.\mathrm{dm}^{-3}\right)$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
$>\left[H_{2}\right]\left[I_{2}\right]$
(Notice that because the $[\mathrm{HI}]$ is squared $\left([\mathrm{HI}]^{2}\right)$, that the $\mathrm{mol} \mathrm{dm}{ }^{-3}$ is also squared)

AFFECTS OF CHANGES ON THE EQUILIBRIUM CONSTANT, K ${ }_{C}$

Changes in Factors	Effect on the Equillbrium Constant, Kc
More products added in equal amounts	Kc decreases (Equilibrium shifts left)
More reactants added in equal mole amounts	Kc increases (Equilibrium shifts right)
Increase in pressure	Kc increases/decreases depending on the mole ratios of reactants to products (Equilibrium shifts right/left)
Decrease in pressure	Kc increases/decreases depending on the mole ratios of reactants to products (Equilibrium shifts right/left)
Increase in temperature (Exothermic)	Kc decreases (Equilibrium shifts left)
Decrease in temperature (Exothermic)	Kc increases (Equilibrium shifts right)
Increase in temperature (Endothermic)	Kc increases (Equilibrium shifts right)
Decrease in temperature (Endothermic)	Kc decreases (Equilibrium shifts left)

